
Porting the ZFS file system to the FreeBSD operating system

Pawel Jakub Dawidek
pjd@FreeBSD.org

1 Introduction

The ZFS file system makes a revolutionary (as opposed
to evolutionary) step forward in file system design. ZFS
authors claim that they throw away 20 years of obsolute
assumptions and designed an integrated system from
scratch.

The ZFS file system was developed by Sun Microsys-
tems, Inc. and was first available in Solaris 10 operating
system. Although we cover some of the key features of
the ZFS file system, the primary focus of this paper is
to cover how ZFS was ported to the FreeBSD operating
system.

FreeBSD is an advanced, secure, stable and scalable
UNIX-like operating system, which is widely deployed
for various internet functions. Some argue that one of
the largest challenges facing FreeBSD is the lack of a
robust file system. Porting ZFS to FreeBSD attempts to
address these short comings.

2 ZFS file system and some of its features

Calling ZFS a file system is not precise. ZFS is much
more than only file system. It integrates advanced
volume management, which can be utilized by the file
system on top of it, but also to provide storage through
block devices (ZVOLs). ZFS also has many interesting
features not found in other file systems. In this section,
we will describe some of the features we find most
interesting.

2.1 Pooled storage model
File systems created by ZFS are not tied to a specified
block device, volume, partition or disk. All file systems

within the same ”pool”, share the whole storage assigned
to the ”pool”. A pool is a collection of storage devices. It
may be constructured from one partition only, as well as
from hundreds of disks. If we need more storage we just
add more disks. The new disks are added at run time and
the space is automatically available to all file systems.
Thus there is no need to manually grow or shrink the
file systems when space allocation requirements change.
There is also no need to create slices or partitions, one
can simply forget about tools like fdisk(8), bsdlabel(8),
newfs(8), tunefs(8) and fsck(8) when working with ZFS.

2.2 Copy-on-write design

To ensure the file system is functioning in a stable and
reliable manner, it must be in a consistent state. Unfortu-
nately it is not easy to guarantee consistency in the event
of a power failure or a system crash, because most file
system operations are not atomic. For example when a
new hard link to a file is created, we need to create a
new directory entry and increase link count in the inode,
which means we need two writes. Atomicity around disk
writes can only be guaranteed on a per sector basis. This
means if a write operation spans more than a single sec-
tor, there can be no atomicity guarantees made by the
disk device. The two most common methods to manage
consistency of file system are:

• Checking and repairing file system with
fsck [McKusick1994] utility on boot. This is
very inefficient method, because checking large
file systems can take serval hours. Starting from
FreeBSD 5.0 it is possible to run fsck program
in the background [McKusick2002], significantly
reducing system downtime. To make it possible,
UFS [McKusick1996] gained ability to create
snapshots [McKusick1999]. Also file system has to
use Soft updates [Ganger] guarantee that the only

inconsistency the file system would experience is
resource leaks steming from unreferenced blocks or
inodes. Unfortunately, file system snapshots have
few disadvantages. One of the stages of performing
a snapshot blocks all write operations. This stage
should not depend on file system size and should
not take too long. The time of another stage, which
is responsible for snapshot perparation grows lin-
early with the size of the file system and generates
heavy I/O load. Once snapshot is taken, it should
not slow the system down appreciably except when
removing many small files (i.e., any file less than
96Kb whose last block is a fragment) that are
claimed by a snapshot. In addition checking file
system in the background slows operating system
performance for many hours. Practice shows that it
is also possible for background fsck to fail, which
is a really hard situation, because operating system
needs to be rebooted and file system repaired in
foreground, but what is more important, it means
that system was working with inconsistent file
system, which implies undefined behaviour.

• Store all file system operations (or only metadata
changes) first in a special ”journal”, once the whole
operation is in the journal, it is moved to the des-
tination area. In the event of a power failure or a
system crash incomplete entires in the journal are
removed and not fully copied entries are copied
once again. File system journaling is currently the
most popular way of managing file system consis-
tency [Tweedie2000, Best2000, Sweeney1996].

The ZFS file system does not need fsck or jounrals
to guarantee consistency, instead takes an alternate
”Copy On Write” (COW) approach. This means it never
overwrites valid data - it writes data always into free
area and when is sure that data is safely stored, it just
switches pointer in block’s parent. In other words, block
pointers never point at inconsistent blocks. This design
is similar to the WAFL [Hitz] file system design.

2.3 End-to-end data integrity and self-
healing

Another very important ZFS feature is end-to-end data
integrity - all data and metadata undergoes checksum
operations using one of several available algorithms
(fletcher2 [fletcher], fletcher4 or SHA256). This allows
to detect with very high probability silent data corrup-
tions cased by any defect in disk, controller, cable, driver,
or firmware. Note, that ZFS metadata are always check-
summed using SHA256 algorithm. There are already
many reports from the users experiencing silent data

corruptions successfully detected by ZFS. If some level
of redundancy is configured (RAID1 or RAID-Z) and
data corruption is detected, ZFS not only reads data from
another replicated copy, but also writes valid data back to
the component where corruption was originally detected.

2.4 Snapshots and clones

A snapshot is a read-only file system view from a given
point in time. Snapshots are fairly easy to implement for
file system storing data in COW model - when new data
is stored we just don’t free the block with the old data.
This is the reason why snapshots in ZFS are very cheap
to create (unlike UFS2 snapshots). Clone is created on
top of a snapshot and is writable. It is also possible
to roll back a snapshot forgetting all modifications
introduced after the snapshot creation.

2.5 Built-in compression and encryption

ZFS supports compression at the block level. Currently
(at the time this paper is written) only one compression
algorithm is supported - lzjb (this is a variant of Lempel-
Ziv algorithm, jb stands for his creator - Jeff Bonwick).
There is also implementation of gzip algorithm support,
but it is not included in the base system yet. Data
encryption is a work in progress [Moffat2006].

2.6 Portability

A very important ZFS characteristic is that the source
code is written with portability in mind. This is not an
easy task, especially for the kernel code. ZFS code is
very portable, clean, well commented and almost self-
contained. The source files rarely include system head-
ers directly. Most of the times, they only include ZFS-
specific header files and a special zfs context.h
header, where one should place system-specific includes.
Big part of the kernel code can be also compiled in user-
land and used with ztest utility for regression and stress
testing.

3 ZFS and FreeBSD

This section describes the work that has been done to
port the ZFS file system over to the FreeBSD operating
system.
The code is organized in the following parts of the source
tree:

2

• contrib/opensolaris/ - userland code taken
from OpenSolaris, used by ZFS (ZFS control utili-
ties, libraries, etc.),

• compat/opensolaris/ - userland API com-
patibility layer (implementation of Solaris-specific
functions in FreeBSD way),

• cddl/ - Makefiles used to build userland utilities
and libraries,

• sys/contrib/opensolaris/ - kernel code
taken from OpenSolaris, used by ZFS,

• sys/compat/opensolaris/ - kernel API
compatiblity layer,

• sys/modules/zfs/ - Makefile for building
ZFS kernel module.

The following milestones were defined to port the ZFS
file system to FreeBSD:

• Created Solaris compatible API based on FreeBSD
API.

• Port userland utilities and libraries.

• Define connection points in the ZFS top layers
where FreeBSD will talk to us and those are:

– ZPL (ZFS POSIX Layer) which has to be able
to communicate with VFS,

– ZVOL (ZFS Emulated Volume) which has to
be able to communicate with GEOM,

– /dev/zfs control device, which actually
only talks to ZFS userland utilities and li-
braries.

• Define connection points in the ZFS buttom layers
where ZFS needs to talk to FreeBSD and this is only
VDEV (Virtual Device), which has to be able to
communicate with GEOM.

3.1 Solaris compatibility layer
When a large project like ZFS is ported from another
operating system one of the most important rules is to
keep number of modifications of the original code as
small as possible, because the fewer modifications, the
easier porting new functionality and bug fixes is. The
programmer that does the porting work is not the only
one responsible for number of changes needed, it also
depends on how portable the source code is.

To minize the number of changes, a Solaris API
compatability layer was created. The main goal was

to implement Solaris-specific functions, structures, etc.
using FreeBSD KPI. In some cases, functions needed
to be renamed, while in others, functionality needed
to be fully implemented from scratch. This technique
proved to be very effective (not forgetting about ZFS
code portability). For example looking at files from the
uts/common/fs/zfs/ directory and taking only
non-trivial changes into account, only 13 files out of 112
files were modified.

3.1.1 Atomic operations

There are a bunch of atomic operations implemented
in FreeBSD (atomic(9)), but there are some that exist
in Solaris and have no equivalents in FreeBSD. The
missing operations in pseudo-code look like this:

<type>
atomic_add_<type>_nv(<type> *p, <type> v)
{

return (*p += v);
}

<type>
atomic_cas_<type>(<type> *dst, <type> cmp, <type> new)
{

<type> old;

old = *dst;
if (old == cmp)

*dst = new;
return (old);

}

Another missing piece is that FreeBSD implements
64bit atomic operations only on 64bit architectures
and ZFS makes heavy use of such operations on all
architectures.

Currently, atomic operations are implemented in
assembly language located in the machine dependant
portions of the kernel. As a temporary work around,
the missing atomic operations were implemented in C,
and global mutexes were used to guarantee atomicity.
Looking forward, the missing atomic operations may be
imported directly from Solaris.

3.1.2 Sleepable mutexes and condition variables

The most common technique of access synchronization
to the given resources is locking. To guarantee exclu-
sive access FreeBSD and Solaris use mutexes. Unfor-
tunately we cannot use FreeBSD mutex(9) KPI to im-

3

plement Solaris mutexes, because there are some im-
portant differences. The biggest problem is that sleep-
ing with FreeBSD mutex held is prohibited, on Solaris
on the other hand such behaviour is just fine. The way
we took was to implement Solaris mutexes based on our
shared/exclusive locks - sx(9), but only using exclusive
locking. Because of using sx(9) locks for Solaris mutex
implementation we also needed to implement condition
variables (condvar(9)) to use Solaris mutexes.

3.2 FreeBSD modifications
There were only few FreeBSD modifications needed to
port ZFS file system.

The sleepq add(9) function was modified to take
struct lock object ∗ as an argument instead of
struct mtx ∗. This change allowed to implement
Solaris condition variables on top of sx(9) locks.

The mountd(8) program gained ability to work
with multiple exports files. With this change we can
automatically manage private exports file stored in
/etc/zfs/exports via zfs(1) command.

The VFS VPTOFH() operation was turned into
VOP VPTOFH() operation. As confirmed by Kirk
McKusick, vnode to file handle translation should
be a VOP operation in the first place. This change
allows to support multiple node types within one file
system. For example in ZFS v data field from the vnode
structure can point at two different structures (znode t or
zfsctl node t). To be able to recognize which structure it
is, we define different functions as vop vptofh operation
for those two different vnodes.

lseek(2) API was extended to support SEEK DATA
and SEEK HOLE [Bonwick2005] operation types.
Those operations are not ZFS-specific. They are useful
mostly for backup software to skip ”holes” in files.
”Holes” like those created with truncate(2).

3.3 Userland utilities and libraries
Userland utilities and libraries communicate with the
kernel part of the ZFS via /dev/zfs control device.
We needed to port the following utilities and libraries:

• zpool - utility for storage pools configuration.

• zfs - utility for ZFS file systems and volumes con-
figuration.

• ztest - program for stress testing most of the ZFS
code.

• zdb - ZFS debugging tool.

• libzfs - the main ZFS userland library used by
both zfs and zpool utilities.

• libzpool - test library containing most of the ker-
nel code, used by ztest.

To make it work we also ported libraries (or im-
plemented wrappers) they depend on: libavl,
libnvpair, libuutil and libumem.

3.4 VDEV GEOM
ZFS have to use storage provided by the operating
system, so at the bottom layers it has to be connected
to disks. In Solaris there are two ”leaf” VDEVs
(Virtual Devices) that allow to use storage from disks
(VDEV DISK) and from files (VDEV FILE). We don’t
use those in FreeBSD. The interface to talk to disks in
FreeBSD is totally incompatible with what Solaris has.
That’s why we decided to create a FreeBSD-specific
leaf VDEV - VDEV GEOM. VDEV GEOM was imple-
mented as consumer-only GEOM class, which allows to
use any GEOM provider (disk, partition, slice, mirror,
encrypted storage, etc.) as a storage pool component.
We find this solution very flexible, even more flexible
than what Solaris has. We also decided not to port
VDEV FILE, because files can always be accessed via
md(4) devices.

3.5 ZVOL
ZFS can serve the storage in two ways - as a file system
or as a raw storage device. ZVOL (ZFS Emulated
Volume) is a ZFS layer responsible for managing raw
storage devices (GEOM providers in FreeBSD) backed
by space from a storage pool. It was implemented in
FreeBSD as a provider-only GEOM class to fit best
in FreeBSD current architecture (all storage devices
in FreeBSD are GEOM providers). This way we can
put a UFS file system or swap on top of a ZFS volume
or we can use ZFS volumes as components in other
GEOM tranformations. For example we can encrypt
ZFS volume with GELI class.

3.6 ZPL
ZPL (ZFS POSIX Layer) is the layer that VFS interface
communicates with. This was the hardest part of the en-
itre ZFS port. The VFS interfaces are most of the time
very system-specific and also very complex. We belive

4

that VFS is one of the most complex subsystem in the
entire FreeBSD kernel.
There are many differences in VFS on Solaris and
FreeBSD, but they are still quite similar. VFS on So-
laris seems to be cleaner and a bit less complex than
FreeBSD’s.

3.7 Event notification
ZFS has the ability to send notifications on various
events. Those events include information like storage
pool imports as well as failure notifications (I/O er-
rors, checksum mismatches, etc.). This functionality
was ported to send notifications to the devd(8) daemon,
which seems to be the most suitable communication
channel for those kind of messages. We may consider
creating dedicated userland daemon to manage messages
from ZFS.

3.8 Kernel statistics
Various statistics (mostly about ZFS cache usage) are ex-
ported via kstat Solaris interface. We implemented the
same functionality using FreeBSD sysctl interface. All
statistics can be printed using the following command:

sysctl kstat

3.9 Kernel I/O KPI
The configuration of a storage pool is kept on its
components, but in addition configuration of all
pools is cached in /etc/zfs/zpool.cache file.
When the pools are added, removed or modified
/etc/zfs/zpool.cache file is updated. It was not
possible to access files from the kernel easly (without
using VFS internals), so we created KPI that allows to
perform simple operations on files from the kernel. We
called the KPI ”kernio”. Below are the list of operations
supported. All functions are equivalents of userland
functions, the only difference is that they operate on
vnode, not file descriptor.

struct vnode *kio open(const char *file, int flags,
int cmode)

• Opens or creates a file returning a pointer to a vnode
related to the file. Returns NULL if file can’t be
opened or created.

void kio close(struct vnode *vp)

• Close the file related to the given vnode.

ssize t kio pread(struct vnode *vp, void *buf, size t
size, off t offset)

• Reads data at the given offset. Returns number of
bytes read or -1 if the data cannot be read.

ssize t kio pwrite(struct vnode *vp, void *buf,
size t size, off t offset)

• Writes data at the given offset. Returns number of
bytes written or -1 if the data cannot be written.

int kio fstat(struct vnode *vp, struct vattr *vap)

• Obtains informations about the given file. Return 0
on success or error number on failure.

int kio fsync(struct vnode *vp)

• Causes all modified data and file attributes to be
moved to a permanent storage device. Return 0 on
success or error number on failure.

int kio rename(const char *from, const char *to)

• Renames file from to a name to. Return 0 on suc-
cess or error number on failure.

int kio unlink(const char *name)

• Removes file name. Return 0 on success or error
number on failure.

4 Testing file system correctness

It is very important and very hard to verify that file sys-
tem works correctly. File system is a very complex beast
and there are many corner cases that have to be checked.
If testing is not done right, bugs in a file system can lead
to applications misbehaviour, system crashes, data cor-
ruptions or even security holes. Unfortunately we didn’t
find freely available file system test suits, that verify
POSIX conformance. Because of that, during the ZFS
port project the author developed fstest test suite [fstest].
At the time this paper is written, the test suite contains
3438 tests in 184 files and tests the following file system
operations: chflags, chmod, chown, link, mkdir, mkfifo,
open, rename, rmdir, symlink, truncate, unlink.

5 File system performance

Below we present some performance numbers to com-
pare current ZFS version for FreeBSD with various UFS
configurations. All file systems were tested with the
atime option turned off.
Untaring src.tar archive four times one by one:

UFS 256s
UFS+SU 207s
UFS+gjournal+async 127s
ZFS 237s

5

Removing four src directories one by one:
UFS 230s
UFS+SU 94s
UFS+gjournal+async 48s
ZFS 97s

Untaring src.tar by four processes in parallel:
UFS 345s
UFS+SU 333s
UFS+gjournal+async 158s
ZFS 199s

Removing four src directories by four processes in
parallel:

UFS 364s
UFS+SU 185s
UFS+gjournal+async 111s
ZFS 220s

Executing dd if=/dev/zero of=/fs/zero
bs=1m count=5000:

UFS 78s
UFS+SU 77s
UFS+gjournal+async 200s
ZFS 111s

6 Status and future directions

6.1 Port status
ZFS port is almost finished. 98% of the whole function-
ality is already ported. We still need to work on perfor-
mance. Here are some missing functionalities:

• ACL support. Currently ACL support is not ported.
This is more complex problem, because FreeBSD
has only support for POSIX.1e ACLs. ZFS imple-
ments NFSv4-style ACLs. To be able to port it to
FreeBSD, we must add required system calls, teach
system utilities how to manage ACLs and prepare
procedures on how to convert from one ACL-type
to another on copy, etc. (if possible).

• ZFS allows to export file systems over NFS (which
is already implemented) and ZVOLs over iSCSI. At
this point there is no iSCSI target deamon in the
FreeBSD base system, so there is nothing to inte-
grate this functionality with.

• Clean up some parts of the code that were coded
temporarily to allow to move forward.

6.2 Future directions
Of course there is a plan to import ZFS into FreeBSD
base system, it may be ready for 7.0-RELEASE. There
is no plan to merge ZFS to the RELENG 6 branch.

One of the interesting things to try is to add
jails [Kamp2000] support to ZFS. On Solaris, ZFS has
support for zones [Price] and will be nice to experiment
with allowing for ZFS file system creation and adminis-
tration from within a jail.

FreeBSD UFS file system supports system flags -
chflags(2). There is no support for those in the ZFS file
system. We consider adding support for system flags to
ZFS.

There is no encryption support in the ZFS itself, but
there is an ongoing project to implement it. It may
be possible to cooperate with SUN developers to help
finish this project and to protect portability of the code,
so we can easly integrate encryption support with the
opencrypto [Leffler2003] framework.

7 Acknowledgments

I’d like to thank ZFS Developers who created this great
file system.

I’d like to thank the FreeBSD Foundation [fbsdf]
for their support. I’m using machines from
the FreeBSD Netperf Cluster [netperf] for my de-
velopment work. This paper was also first presented at
AsiaBSDCon conference, where the FreeBSD Founda-
tion covered my transportation costs.

I’d like to thank Wheel LTD [wheel]. I was able to do
the work during my day job.

I’d like to thank the FreeBSD community for their
never-ending support and warm words.

References

[McKusick1994] M. McKusick and T. Kowalski, Fsck -
The UNIX File System Check Program, 1994

[McKusick2002] M. McKusick, Running ’Fsck’ in the
Background, 2002

[McKusick1996] M. McKusick, K. Bostic, M. Karels,
and J. Quarterman, The Design and Implementation
of the 4.4BSD Operating System, 1996

[McKusick1999] M. McKusick, G. Ganger, Soft Up-
dates: A Technique for Eliminating Most Syn-
chronous Writes in the Fast Filesystem, 1999

6

[Ganger] G. Ganger, M. McKusick, C. Soules, and
Y. Patt, Soft Updates: A Solution to the Metadata
Update Problem in File Systems

[Tweedie2000] S. Tweedie, EXT3, Journaling Filesys-
tem, 2000

[Best2000] S. Best, JFS overview, 2000

[Sweeney1996] A. Sweeney, Scalability in the XFS File
System, 1996

[Hitz] D. Hitz, J. Lau, and M. Malcolm, File System De-
sign for an NFS File Server Appliance,

[SHA-1] SHA-1 hash function,
http://en.wikipedia.org/wiki/SHA-1

[fletcher] Fletcher’s checksum,
http://en.wikipedia.org/wiki/Fletcher’s checksum

[Moffat2006] D. Moffat, ZFS Encryption Project, 2006

[Bonwick2005] J. Bonwick, SEEK HOLE and
SEEK DATA for sparse files, 2005

[Kamp2000] P. Kamp and R. Watson, Jails: Confining
the omnipotent root, 2000

[Leffler2003] S. Leffler, Cryptographic Device Support
for FreeBSD, 2003

[Price] D. Price and A. Tucker, Solaris Zones: Operat-
ing System Support for Consolidating Commercial
Workloads

[fstest] File system test suite,
http://people.freebsd.org/ pjd/fstest/,
2007

[fbsdf] The FreeBSD Foundation,
http://www.FreeBSDFoundation.org/

[netperf] FreeBSD Netperf Cluster,
http://www.freebsd.org/projects/netperf/cluster.html

[wheel] Wheel LTD,
http://www.wheel.pl

7

